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Beam-Beam Effects at the Fermilab Tevatron: Theory
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The Tevatron in Run II is operating with three trains of twelve bunches each. Long-range beam-
beam interactions have been significant sources of beam loss and lifetime limitations of antiprotons.
The dynamics due to the long-range beam-beam interactions depends on several beam parame-
ters such as tunes, coupling, chromaticities, beam separations, intensities, and emittances. We have
developed analytical tools to calculate, for example, amplitude dependent tune shifts and chromatic-
ities, beam-beam induced coupling, and resonance driving terms. We report on these calculations
and estimates of Dynamic Aperture (DA) and diffusion coefficients with long-term tracking. These
theoretical results are compared with observations and used to predict performance at design values
of beam parameters.
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I. INTRODUCTION

Beam-beam interactions play a major role in circular colliders. The effects of head-on interactions
have a long history. However, the long-range, parasitic interactions have lately become significant
in some operating colliders such as the Tevatron and CESR. Bunches in the future LHC will also
be subject to these interactions. The beam dynamics issues associated with these interactions have
been discussed at several workshops over the past few years; see for example the articles in [1], [2],
[3] and references therein.

In this paper we will discuss the major theoretical aspects of the long-range interactions in the
weak-strong regime as applicable to Run II in the Tevatron. Our emphasis will be on analytical
calculations that allow insight into these interactions followed by numerical simulations. We will
discuss specific beam-beam observations in the Tevatron only when immediately relevant to the
theoretical development. Experimental studies and observations of beam-beam phenomena in the
Tevatron have been published elsewhere; see e.g. references [4], [5].

We start with a brief review of the Tevatron in Section II. Section III is devoted to the analysis
of the optics of beam-beam interactions of elliptical Gaussian beams. We follow up in Section IV
with particle tracking simulations to calculate dynamic aperture and diffusion coefficients. Section
V summarizes our main results.

II. TEVATRON: OPERATION, BEAM PARAMETERS AND LIFETIMES

Protons and anti-protons collide at two experimental detectors CDF and D0. Away from the
interaction points (IPs) the beams circulate on separated helical orbits within the same beam pipe.
Electrostatic separators placed at several locations create these orbits. In Run I there were six
bunches per beam. In Run II, which started in April 2001, each beam has three trains of twelve
bunches. Consequently there are six times as many long-range beam-beam interactions as in Run I.
It was anticipated that these long-range beam-beam interactions would have a more serious impact
on beam lifetime and losses. This has been borne out by observations. Beam-beam observations
and dedicated experiments are summarized in references [4] and [5]. Table I contains a brief list
of the important parameters.

∗Electronic address: tsen@fnal.gov
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Parameter Injection Collision

(p/p) (p/p)

Circumference [m] 6283.187

Number of bunches 36

Bunch spacing [nsec] 396

Energy [GeV] 150 980

Beta∗ at IP [m] 1.6 0.35

Normalized transverse emittance (95 %)[πmm-mrad] 20/15

Bunch intensity (×1011) 2.7/0.3

Momentum spread(r.m.s) 5.5×10−4 2.2×10−4

Transverse tunes (20.583,20.575) (20.585,20.575)

Synchrotron tune 1.96×10−3 7.2×10−4

Beam-beam parameter 0.0015/0.0099

TABLE I: Design values of selected beam parameters in the Tevatron

FIG. 1: From Reference [6]. Beam configuration at injection after both beams are loaded. The proton
and antiproton bunches are labeled P01, P02, ..., and A01, A02, ..., starting from the upstream end of the
bunch train so that A01 and P01 pass each other at F0.

A collider fill starts with coalesced proton bunches from the Main Injector loaded one bunch
at a time onto the central orbit in the Tevatron. After all 36 proton bunches are loaded, the
electrostatic separators are powered and the protons are moved to their helical orbit. Anti-protons
are loaded four bunches at a time into one of three abort gaps onto the anti-proton helical orbit.
For the purposes of this paper we call this stage “cog 0” where the four leading bunches in each
train are injected. The anti-proton bunches are moved longitudinally relative to the proton bunches
(“cogged”) by 84 rf buckets to make room for the next four bunches in the abort gap; we call this
stage “cog1”. The leading eight bunches in each train are cogged again by 84 buckets to allow the
injection of the last four bunches in each train. Figure 1 (taken from Reference [6]) shows the beam
configuration at injection with 36 bunches in each beam circulating. After each train is full, which
we call stage “cog2”, the two beams are accelerated to top energy. A final cogging is done at the
end of the acceleration. The optics in the interaction regions (IRs) is changed to lower the beta
functions at the IPs from 1.6m to 0.35m. After the final step of this beta squeeze, the transverse
separations at the IPs are reduced to zero with the use of the appropriate separators around the
IPs. Collimators are moved in to reduce the beam halo and background in the detectors and a
store begins.

In dedicated beam studies with only anti-protons injected, beam lifetimes at injection were
found to be around 20 hours and lifetimes at top energy were around 300 hours. These lifetimes
are much larger at both stages than typical anti-proton lifetimes in regular stores with protons
present. Figure 2 shows examples of anti-proton lifetime bunch by bunch in two typical stores,
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FIG. 2: Anti-proton lifetimes bunch by bunch in two stores. Store 2502 occurred on May 2, 2003 while
Store 3175 is a store on January 16, 2004. Left: At injection (150 GeV) after the second cogging. Right:
At low-beta (980 GeV) during collisions.
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FIG. 3: Left: Radial beam separations at 138 interaction points around the ring. Left: At injection (150
GeV) after the second cogging. Right: At low-beta (980 GeV). The head-on collisions are at locations B0
and D0.

one from May 2003 and another store in January 2004. Anti-proton lifetimes at injection have
increased over the last year as a consequence of several improvements. These include operation with
lower chromaticities following the removal of the C0 Lambertson and shielding the F0 Lambertson,
reduced anti-proton emittances due to changes in the transfer lines, and changes to the helices. The
lifetime variation bunch to bunch is quite similar in the two stores shown in the figure. Anti-proton
lifetimes at collision over this same time period have dropped due to the increase in luminosity.
The bunch to bunch variations in lifetime are quite different in the two stores since these lifetimes
are more sensitive to the parameters of the proton bunches that collide with a given anti-proton
bunch at CDF and D0.

The configuration of long-range interactions is different at injection and collision. Each bunch
experiences 72 long-range interactions at injection but at collision there are 70 long-range interac-
tions and two head-on collisions per bunch. In total there are 138 locations around the ring where
beam-beam interactions occur. The sequence of 72 interactions out of the 138 interactions is dif-
ferent for each bunch, hence the effects are different from bunch to bunch. The locations of these
interactions and the beam separations change from injection to collision. The left plot in Figure 3
shows the separations at all 138 interaction points in the ring after the 2nd cogging at injection.
The minimum separation is about 4σ. The right plot in this figure shows the beam separations
at collision. The head-on collisions occur at B0 (CDF experiment) and D0 (D0 experiment). The
minimum separations (∼ 5σ) at the parasitic encounters occur close to the experiments.
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III. THEORETICAL OPTICS OF BEAM-BEAM INTERACTIONS

The effects of the beam-beam force can be characterized in terms of some optical quantities, such
as tune shifts, chromaticities, coupling, and resonance driving terms. We illustrate the derivation
of these quantities in this section. The amplitude dependent tune shift derivation is presented is
some detail, and the derivation of the chromaticity, coupling, and resonance driving terms will be
only sketched since they follow the same main ideas.

A. Amplitude dependent tune-shifts

The beam-beam potential experienced by the antiprotons due to protons with Gaussian beam
distributions is [7]:

U =
Nbrp
γp

∫ ∞

0

dq
[

(2σ2
x + q)

(

2σ2
y + q

)]1/2

{

1 − exp

[

− (xβ + Lx)2

2σ2
x + q

− (yβ + Ly)2

2σ2
y + q

]}

, (1)

where Nb is the number of protons per bunch, rp is the classical proton radius, γp is the relativistic
factor, (σx, σy) are the rms proton beam sizes in the two planes, (xβ , yβ) are the betatron coordi-

nates of a test anti-proton and the separation between the two colliding bunches is ~L = (Lx, Ly)
in the two planes respectively (w.r.t. the strong beam). The expression for head-on tune shift
is well known [7], and an approximation for the long range tune shifts of round beams, which is
valid in the large separation and small amplitude case, was derived in [8]. An efficient numerical
integration scheme for the general case was also presented in [9].

The amplitude dependent tune shift is the advance in angle along a torus in normal form space,
where a particle moves with amplitude dependent frequency. Thus, the first step of the computation
is a transformation to normal form. Assuming a linearly dominated regime, it should be a very
good approximation to make only a first order normal form transformation, and then take an
average over the angles. The first order normal form transformation to action-angle variables is

achieved by the transformation
(

xβ , x
′
β ; yβ , y

′
β

)

7→ (Jx, ψx; Jy, ψy), with

xβ =
√

2βxJx cosφx, φx = ψx +

∫

ds

βx(s)
− νx

s

R
(2)

and similarly for the vertical plane. Assuming that the beam-beam interaction is the only per-
turbation to an otherwise simple harmonic motion with frequencies (νx0, νy0), the Hamiltonian
becomes

H = νx0Jx + νy0Jy + U (Jx, ψx; Jy, ψy) δ (θ − θc) , (3)

where δ (θ) is the Dirac delta function, and θ = s/R is the independent variable. The delta function
signifies that we neglect bunch length effects, and the interaction happens at a single collision point
θc. Introducing the tune shift as ∆νz = νz − νz0, where z = (x, y), from Hamilton’s equations of
motion we obtain that the change in the average phase advance is given by the following formula:

2π∆νz =
1

(2π)
2

∫ 2π

0

∫ 2π

0

∂U

∂Jz
dφxdφy . (4)

The smoothness of the potential allows interchanging various integration and differentiation op-
erations, and after performing the normal form transformation, (4) becomes (for z = x, and
analogously for y)

∆νx = C

∫ ∞

0

dq
[

(2σ2
x + q)

(

2σ2
y + q

)]1/2

[

∂

∂Jx

(

e−pxI1 (Jx, Lx)
)

]

[

e−pyI2 (Jy, Ly)
]

, (5)

where C = −Nbrp/((2π)
3
γp) < 0, and

I1 (Jx, Lx) =

∫ 2π

0

exp
(

−sx cosφx + rx sin2 φx

)

dφx, (6)

I2 (Jy, Ly) =

∫ 2π

0

exp
(

−sy cosφy + ry sin2 φy

)

dφy. (7)
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We introduced the following shorthand notations:

px =
2βxJx + L2

x

2σ2
x + q

, rx =
2βxJx

2σ2
x + q

, sx =
2Lx

√
2βxJx

2σ2
x + q

. (8)

Expanding the exponential in its Taylor series,

erx sin2 φx =

∞
∑

k=0

rk
x sin2k φx

k!
, (9)

we obtain that

I1 =

∞
∑

k=0

rk
x

k!

∫ 2π

0

exp (−sx cosφx) sin2k φxdφx. (10)

If sx 6= 0, a standard formula from the theory of Bessel functions [10] can be easily modified to
give

∫ 2π

0

exp (−sx cosφx) sin2k φxdφx = 2
√
πΓ

(

k +
1

2

)

Ik (sx)

(

2

sx

)k

. (11)

Here Ik (sx) is the modified Bessel function of the first kind, and Γ
(

k + 1
2

)

is the Gamma function.
The zero amplitude tune shift values can be obtained from this expression by taking the proper
limits.

The final result is useful because the sum (10) converges for any value of rx and sx, and it
converges reasonably fast. The sum is positive definite, since every term in the sum is positive; so
the formula should be numerically stable. Using the ratio test to study convergence, we obtained
that (10) converges faster than erx . Moreover, the value of the infinite sum depends on the
separations (Lx, Ly) but its rate of convergence does not, which makes it suitable for numerical
evaluation in the long-range case. This is important, since it gives a measure of how many terms
must be retained from the infinite sum. Furthermore, the maximum value of rx is Jx/εx, where
εx = βx/σ

2
x is the emittance. It follows that in the infinite sum more terms need to be retained in

case of large amplitudes.
Returning to the expression for the tune shift, we obtain that

∆νx = 4πC

∫ ∞

0

dq
[

(2σ2
x + q)

(

2σ2
y + q

)]1/2

∑

x

∑

y
, (12)

where

∑

x
=

∞
∑

k=0

(

2rx

sx

)k

k!
Γ

(

k +
1

2

) [

Ik (sx)

(

2k

2Jx
− 2βx

2σ2
x + q

)

+ Ik+1 (sx)
sx

2Jx

]

, (13)

∑

y
=

∞
∑

l=0

(

2ry

sy

)l

l!
Γ

(

l +
1

2

)

e−pyIl (sy) . (14)

The results can be expressed in a more elegant form if we change the integration variable from
q to v by v = 1/[1 + q/(2σ2

x)], and introduce the ratio of rms beam sizes r = σy/σx. It is also
convenient to introduce dimensionless variables for the amplitudes and separations according to

ax =

√
2βxJx

σx
, dx =

Lx

σx
(15)

and similarly define ay and dy . Using these notations, we obtain the following relationships:

px =
v

2

(

a2
x + d2

x

)

, py = f
v

2

(

a2
y + d2

y

)

, sx = vaxdx, sy = fvaydy, f =
r2

v (r2 − 1) + 1
. (16)
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Putting everything together, the final expression for the amplitude dependent tune shift in x is

∆νx(ax, ay, dx, dy, r) =
4πC

εx

∫ 1

0

e−(px+py)

v [v (r2 − 1) + 1]
1/2

∑

x

∑

y
dv, (17)

where

∑

x
=

∞
∑

k=0

(

ax

dx

)k

k!
Γ

(

k +
1

2

) [

Ik (sx)

(

2k

a2
x

− v

)

+ Ik+1 (sx)
sx

a2
x

]

, (18)

∑

y
=

∞
∑

l=0

(

ay

dy

)l

l!
Γ

(

l +
1

2

)

Il (sy) . (19)

For completeness, the amplitude dependent tune shift in y is similarly

∆νy(ax, ay, dx, dy, r) =
4πC

εy

∫ 1

0

e−(px+py)

v [v (r2 − 1) + 1]
1/2

∑

′

x

∑

′

y
dv, (20)

where

∑

′

x
=

∞
∑

k=0

(

ax

dx

)k

k!
Γ

(

k +
1

2

)

Ik (sx) , (21)

∑

′

y
=

∞
∑

l=0

(

ay

dy

)l

l!
Γ

(

l +
1

2

) [

Il (sy)

(

2l

a2
y

− fv

)

+ Il+1 (sy)
sy

a2
y

]

. (22)

We note that all integrals are evaluated over a finite range. In general the amplitude dependent
tune shifts are given by the doubly infinite series in Equations (17) and (20), and it can be shown
that their sign is determined by the first two terms in the expansions. Indeed, in the case of
vanishing amplitudes only the first two terms of the expansion survive the limit ax → 0, ay → 0.
In the case of non-zero amplitudes the argument is based on analyzing the structure of (18). After
a detailed analysis aided by the mean value theorem, the following qualitative statements can be
made for the horizontal tune shift (for more details see [11]):

For small enough horizontal separation the beam-beam effect is focusing at any ampli-
tude and vertical separation. Above a certain threshold of the horizontal separation,
the beam-beam interaction becomes defocusing for particles with small amplitudes and
vertical separation, and focusing for particles with large horizontal amplitudes indepen-
dent of the vertical separation and amplitude. The exact location of the sign change
depends on the vertical separation and amplitude, and beam aspect ratio.

Therefore, for given (sufficiently large) separations and given beam aspect ratio there is a boundary
in the action space (ax, ay) where the tune shifts must vanish, and the particles inside the bound-
ary (smaller amplitudes) may have dynamically different behavior than outside the core (large

amplitudes). Moreover, since the tune shift scales like the derivative of e−(a2
x+d2

x)/2I0 (axdx) w.r.t.
ax, the tune shift starts at a negative value at zero amplitude, might have a minimum negative
value, then cross zero and have a maximum positive value before decaying to zero at infinite am-
plitudes. This may result in folds in the tune footprint, and could result in significant resonance
widths around the folds’ locations. Another type of folding may occur around the maximum value

of the function e−(a2
y+d2

y)/2I0 (aydy) independent of the horizontal amplitude and separation. The
locations of these folds are independent of the tune. If the tunes are such that the resonances occur
at the folds, then we may have large resonance widths because ∆Jres ∝ 1/ (∂(∆ν)/∂J).

Finally, it is worthwhile noting that the cutoff value k = max
(

nint
(

a2
x/2

)

, 1
)

is a good choice
for the truncation of the infinite series for practical computations. The abbreviation nint stands
for nearest integer. In practice we find that 20 terms up to amplitudes of 6σ suffice to achieve a
relative accuracy of 10−6.
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1. Small amplitude tune shifts

Here we will examine the tune shifts of particles at the core of a bunch. First, from (5) it is

clear that ∆νx is positive definite for head-on interactions, ~L = 0. It is clear from (17), (18), and
(19) that the tune shift depends only on the absolute value of the separations in both planes. The
following results are obtained from (17) by taking analytical limits:

lim
ax→0
ay→0

∆νx = ξx

∫ 1

0

e−
d2

x+fd2
y

2
v

√

v (r2 − 1) + 1

(

1− d2
xv

)

dv, (23)

lim
ax→0
ay→0

∆νy = ξy

∫ 1

0

e−
d2

x+fd2
y

2
v

√

v (r2 − 1) + 1

(

f − f2d2
yv

)

dv, (24)

where

ξx,y =
Nbrp

4πγpεx,y
> 0 (25)

is the beam-beam parameter. In the round beam case, r = 1, the integral can be done analytically
to give

lim
ax→0
ay→0

∆νx (r = 1) = −ξ 2

d2

{

cos 2θ − e−
d2

2

[

cos 2θ + cos2 θd2
]

}

. (26)

where dx = d cos θ, dy = d sin θ. It is apparent from (26) that the loci of vanishing tune shifts in
the case of large enough separations are close to the diagonal (θ = 45◦), since the the first term
vanishes along the diagonal and the second term in the curly brackets is suppressed already at
modest separations.

The location closest to the origin where ∆νx changes sign is at |dx| ≈ 1.5852 for dy = 0; this is
also the location of the maximum of the beam-beam force. It is worth noting that if r > 1 then
the maximum of the long-range tune-shift max∆νx < ξ, and if r < 1 then max ∆νx > ξ.

The integral (23) cannot be done analytically if r 6= 1. In the limit of large separations, a first
order perturbation calculation shows that limd→∞ θmin (δr) = π/4 − δr/2 where δr = r − 1. Thus
the locations of vanishing tune shift depend on the beam aspect ratio. The exact dependence can
be computed by numerical integration. The global picture is revealed by the contours along which
the long range tune shift vanish, as shown in Figure 4. Clearly, the contours tend to the graph of
θmin = arccot(r) in the limit of large separation, and show only a weak dependence on d. Notice
that in this case

Lx

Ly
=

dx

dyr
=

cot (θmin)

r
= 1. (27)

Therefore if the separations are large, the tune shifts vanish at equal physical separations for
any aspect ratio. This follows from the fact that the strong beam is point-like at large distances
regardless of its actual aspect ratio, so the tune shift cancellation has the same symmetry as in the
case of round beams.

Fig. 5 shows the small amplitude tune shifts bunch-by-bunch. This pattern is repeated in the
other two trains due to the three-fold symmetry. The tune shifts at injection are small, of the order
of 0.001, with the vertical tune shifts much smaller. The asymmetry between the two planes occurs
because the beta functions are smaller in the vertical plane at most parasitics. The spread of tune
shifts is smallest in the last group of four bunches. The right plot shows the small amplitude tune
shifts at collision. This variation is quite different from the bunch by bunch variation at injection.
First, because the beta functions in the two planes are nearly the same, the horizontal and vertical
tune shifts are comparable. Second, only the head (bunch 1) and the tail (bunch 12) of the train
have tune shifts significantly different from the others - for reasons explained in Section IV D.
Bunch 1 has a lower vertical tune shift while bunch 12 has a lower horizontal tune shift. The tune
shifts are about an order of magnitude larger than at injection because of the large contributions
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FIG. 4: Contour of vanishing tune shifts for the following case: zero amplitudes, the separations are: a)
d = 6 (minimum separation in the Tevatron), b) d = 10 (average separation in the Tevatron), and the
contour represents the polar angle at which the tune shifts vanish for aspect ratios in the range [0.25, 4].
Also shown is c) the function arccot(r), to which the contours apparently converge in the large separation
limit.

from the head-on collisions. The tune shifts calculated independently by Alexahin yielded similar
results.

Very recently, reproducible measurements of individual bunch tunes at collision have been ob-
tained from a new wide-band Schottky monitor that was commissioned in 2003 [14]. Figure 6
shows the tunes of individual anti-proton bunches measured several hours after the beginning of
a store on January 29, 2004. These measured tunes are the tunes of the centroid motion. The
tune shift of the centroid is half the value of the zero amplitude tune shift for rigid motion of the
bunches [12]. The observed pattern of tune shifts reproduces several of the predicted features. In
the horizontal plane, the last bunch has the smallest tune, and bunches 2 to 9 have nearly the
same tunes. In the vertical plane, the first bunch has the smallest tune and the variations in the
other bunches are small. The small differences from the predictions can be attributed to bunch to
bunch variations in proton intensities and emittances.

B. Linear Chromaticity

Just as sextupoles placed where the dispersion is non-zero change the linear chromaticity, so too
do long-range interactions change the machine chromaticity when they occur at locations of non-
zero dispersion. It is rather straightforward to use Equation (17) to compute the chromaticities. We
split the beam separation into two parts: one due to the closed orbits of on-momentum particles,
the other due to dispersion for off-momentum particles. Denoting the dispersion (in units of rms
beam size) at the location of the interaction by η, first we make the following replacements in (17):

dx 7→ dx + ηxδ, dy 7→ dy + ηyδ, (28)

where δ is the relative momentum or energy deviation. By definition, the linear chromaticities are
given by

Q
′

x =
∂∆νx

∂δ

∣

∣

∣

∣

δ=0

, Q
′

y =
∂∆νy

∂δ

∣

∣

∣

∣

δ=0

. (29)
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FIG. 5: Analytically calculated bunch-by-bunch small amplitude tune shifts. Left: at injection (cog 2),
Right: at collision.
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FIG. 6: Measured tunes of individual anti-proton bunches at collision in a store on January 29, 2004.

The derivative of the tune shift with respect to momentum deviation is cumbersome and not very
illuminating. However, using the symbolic capabilities of Mathematica [13], the derivative can be
calculated symbolically, and then evaluated numerically. To this end, the horizontal chromaticity
is given by

Q
′

x(ax, ay, dx, dy, r) =
2πC

axεx

∫ 1

0

dv
e−(px+py)

[v (r2 − 1) + 1]1/2

×
∞
∑

k,l=0

[

Γ
(

k + 1
2

)

Γ
(

l + 1
2

)

k!l!

(

ax

dx

)k (

ay

dy

)l

(AIl (sy) +BIl+1 (sy))

]

, (30)

where

A = 2dx (dxηx + dyηyf) vIk−1 (sx) − ax (3dxηx + 2dyηyf) vIk (sx) + 2ηx

(

a2
xv − k − 1

)

Ik+1 (sx)

−sxηxIk+2 (sx) ,

B = 2ayηyfv (axIk (sx) − dxIk−1 (sx)) . (31)

The vertical chromaticity can be calculated similarly. Note that the same cutoff values for k and
l in the infinite series apply as for the tune shifts, since the convergence does not depend on the
separation (i.e. dispersion).
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1. Small amplitude chromaticities

Despite the complicated structure of the (30), it can be seen that, of course, the chromaticity
vanishes if there is no dispersion (ηx = ηy = 0), and also for head-on collisions, even for non-
zero dispersions. On the other hand, for arbitrary dispersions and separations, but vanishing
amplitudes, the following simplified formulas can be obtained from (23):

lim
ax→0
ay→0

Q
′

x = −ξ
∫ 1

0

e−
d2

x+fd2
y

2
v

[v (r2 − 1) + 1]1/2
v

[

(vd2
x − 3)dxηx + (vd2

x − 1)fdyηy

]

dv , (32)

lim
ax→0
ay→0

Q
′

y = −ξ
∫ 1

0

e−
d2

x+fd2
y

2
v

[v (r2 − 1) + 1]
1/2

fv
[

(fvd2
y − 1)dxηx + (fvd2

y − 3)fdyηy

]

dv (33)

In the case of round beams these integrals can be evaluated analytically. We write the general
result here for the horizontal chromaticity at small amplitudes,

q
′

x = lim
ax→0
ay→0

Q
′

x (r = 1)

= −ξ 2

d6











2
(

(d2
x − 3d2

y)dxηx − (d2
y − 3d2

x)dyηy

)

+e−
d2

2

[

−
(

d6
x + d4

x(2d2
y + 1) + d2

x(d4
y − 2d2

y + 2) − 3(d2
y + 2)d2

y

)

dxηx

−
(

d6
x + d4

x(2d2
y + 3) + d2

x(d4
y + 2d2

y + 6) − (d2
y + 2)d2

y

)

dyηy

]











. (34)

Therefore, for large separations of the closed orbits, the zero amplitude horizontal chromaticity
is

lim
d�1

q
′

x ≈ −ξ 4

d3
(ηx cos 3θ + ηy sin 3θ) . (35)

As earlier, θ is the plane of the helix in the dimensionless (dx, dy) space so that dx = d cos θ,
dy = d sin θ. To obtain an order of magnitude estimate, consider a location where the horizontal
dispersion is 2.5m (average value over the parasitics), the beam size is 1mm and the scaled sepa-
ration d = 10. The scaled dispersion ηx = 2500, so with ξ ' 0.01, the chromaticity contribution
is ∼ 0.1. This is a significant chromaticity when summed over all the parasitics. Notice that the
chromaticity decreases faster (∼ 1/d3) with separation of the closed orbits than the corresponding
tune shift. Along the diagonal θ = π/4, for large d, where the tune shift approximately vanishes
for round beams, the horizontal chromaticity is

lim
d�1

q
′

x(θ = π/4) ≈ ξ
4 (ηx − ηy)√

2d3
. (36)

Therefore, it vanishes only if the dispersions are equal in the two planes which is usually only
the case if both dispersions vanish. In the usual case that ηy � ηx, the horizontal chromaticity
generated by the beam-beam interactions with round beams is small when the plane of the helix
is either 30◦ or 90◦. In the more general case with non-round beams, given separation d and
dispersions, the angle at which the chromaticity vanishes varies with the aspect ratio. Again, it
can be computed by numerical integration.

Fig. 7 shows the small amplitude chromaticities of 12 anti-proton bunches in a train at injection
and collision. The horizontal chromaticity is much larger than the vertical because of the larger
beta and dispersion functions in the horizontal plane. This additional chromaticity will enhance the
synchro-betatron resonances. At injection the horizontal chromaticity of bunches 1-7 is comparable
to the typical chromaticity setting of 4-8 units in the Tevatron. Bunches at the end of a train have
significantly lower chromaticities - this suggests that these bunches will have better lifetimes. At
collision, the beam-beam induced chromaticity is larger and spans a wider range. The bunch to
bunch variation in horizontal chromaticity is similar except for bunch 10 which has a negative
chromaticity. The vertical chromaticity is negative for all bunches. The machine chromaticity at
collision is close to 20 units; this is sufficient to keep all bunch chromaticities positive. However
this calculation does suggest that one source of bunch by bunch variations in lifetimes may be the
differences in chromaticities.



11

-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  2  4  6  8  10  12

C
hr

om
at

ic
iti

es

Bunch Number

Hor.
Ver.

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12

C
hr

om
at

ic
iti

es

Bunch number

Hor. 
Ver. 

FIG. 7: Bunch by bunch small amplitude beam-beam chromaticities of anti-protons. Left: at injection,
Right: at collision.

C. Minimum Tune Split

In general the long-range force has a skew quadrupole component as well as higher order mul-
tipoles. These components couple the transverse motions. The global linear coupling can be
parameterized by the minimum tune split which is the parameter we will calculate here. The
minimum tune split is given by the amplitude of the complex term driving the difference resonance
νx − νy = p, p ∈ Z. The resonance driving term is

∆νmine
iΨ =

1

2π

∮

√

βx (s)βy (s)Axy (s) exp
{

i
[

φx (s) − φy (s) − (νx − νy − p)
s

R

]}

ds, (37)

where φx,y (s) denote the phases, R is the average ring radius, Axy (s) = −∂2U/∂x∂y. and ∆νmin

is the minimum tune split. If there are n beam-beam interaction points, with the abbreviations
introduced in the previous subsection, the minimum tune split becomes

∆νmin =

∣

∣

∣

∣

∣

∣

−Nbrp
2πγp

n
∑

j=1

√

βx,jβy,j
rj
σ2

x,j

(ax + dx,j) (ay + dy,j)Fj exp{i[φx,j−φy,j−(νx−νy−p)sj/R]}

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

n
∑

j=1

Aj exp[iΦj ]

∣

∣

∣

∣

∣

∣

, (38)

where

Fj =

∫ 1

0

v
[

v
(

r2j − 1
)

+ 1
]

3
2

exp

[

−1

2

(

a2
x + d2

x,j

)

− 1

2

r2j v

v
(

r2j − 1
)

+ 1

(

a2
y + d2

y,j

)

]

. (39)

Since the effective skew quadrupole strength depends on the amplitude, the minimum tune split is
also amplitude dependent.

We can use the second equality in Equation (38) to write

∆ν2
min =

∑

i

A2
i +

∑

i

i6=j

∑

j

AiAj cos(Φi − Φj) (40)

The first single sum contributes only positive definite terms. In order for the double summation
to contribute negative terms the phase difference must satisfy π/2 < Φi − Φj < 3π/2. However
the individual phases Φi are a measure of the phase slip between the transverse planes to the
interaction point i. In regular sections of the collider such as the arcs the phase advance is nearly
equal in both planes so Φi ∼ 0 for many interaction points. Thus minimizing the global coupling
requires that the amplitude terms Ai be individually small. More insight into these amplitude
terms can be gained by looking at special cases.
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FIG. 8: Small amplitude minimum tune split due to beam-beam forces. Left: at injection, Right: at
collision.

1. Small amplitude minimum tune split

The integral for Fj can be done analytically for round beams, rj = 1. In that case

Fj = (
2

T 2
j

)2[1 − (1 +
1

2
T 2

j ) exp(−1

2
T 2

j )] (41)

where T 2
j = a2

x +a2
y +d2

x,j +d2
y,j . At zero amplitude ax = 0 = ay, we can write the amplitude term

as

Aj = −Nbrp
2πγp

√

βx,jβy,j

σ2
j

sin 2θj

d2
j

(42)

where θj is the angle of the plane of the helix as before. This expression shows that (a) the
minimum tune split falls off as 1/d2, similar to the tune shift, (b) Aj vanishes if the plane of
the helix is either horizontal or vertical. Along the diagonal θ = 45◦, the linear coupling is at a
maximum. We had noted earlier that at large distances the tune shift vanishes along the diagonal
but the chromaticity in general does not vanish along the diagonal.

Using Equation (38) we have evaluated the small amplitude minimum tune split for the twelve
anti-proton bunches in a train at injection and collision. Figure 8 shows the variation between
the bunches. Typically, skew quadrupole circuits correct the global coupling due to the lattice to
achieve a minimum tune split of about 0.003. At injection the beam-beam induced global coupling
at small amplitude is of the same order of magnitude as the lattice induced global coupling.
Among other effects, this can make some bunches more sensitive to physical aperture limitations.
The beam-beam induced coupling at small amplitudes at collision is about an order of magnitude
smaller than the machine coupling. Beam-beam induced coupling is therefore not significant at
collision.

D. Resonance Driving Terms

Resonance islands are centered around the stable fixed points which can be found from the
equations of motion. The widths of these resonances are found from the resonance driving terms
and the detuning with amplitude, calculated in Section III A. Here we will calculate the resonance
driving terms.

We start by splitting the phase into its periodic and non-periodic parts, φz = ψz + αz , where
z = (x, y), ψz is the canonical angle variable such that ψz (θ + 2π) = ψz (θ) + 2πνz, and

αz (θ) =

∫ θR

0

R
dθ′

βz (θ′)
− νzθ + φ0 (43)

is the periodic part αz (θ + 2π) = αz (θ). The phase includes the amplitude dependent changes
induced by the beam-beam force. Using the shorthand notations introduced for the tune-shift
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derivations, we obtain for the potential

U =
Nbrp
γp

∫ 1

0

dv

v [v (r2 − 1) + 1]1/2
{1 − exp

(

−px − py +
rx + ry

2

)

∑

kx,ky ,lx,ly

(−1)
kx+ky+lx+ly

(44)

× Ikx
(sx) Iky

(sy) Ilx

(rx
2

)

Ily

(ry
2

)

cos (kxφx) cos (kyφy) cos (2lxφx) cos (2lyφy)}.

Expanding the trigonometric part into exponentials, we obtain a sum of 16 terms of the form:

exp {i [(±kx ± 2lx)φx + (±ky ± 2ly)φy]} , (45)

where all 16 possible sign combinations appear in the sum. The further manipulations of each of
these 16 terms is completely analogous, so we will illustrate it with only the case where everywhere
the + sign is taken.

Define new indices bymx = kx+2lx andmy = ky+2ly. The potential in terms of the action-angle
coordinates can be written as U++++(Jx, ψx, Jy, ψy) =

∑

mx,my
U++++

mx,my
exp [i (mxψx +myψy)].

Since U++++
mx,my

is periodic in θ, it can be expanded into Fourier series,

U++++ =
∑

mx,my ,p

U++++
mx,my ,p exp [i (mxψx +myψy − pθ)] , (46)

where

U++++
mx,my,p =

1

2π

∫

U++++
mx,my

exp (ipθ) dθ. (47)

For several infinitesimal beam-beam kicks, the integral reduces to a sum over the kicks, and the
resonance driving terms become

U++++
mx,my ,p =

1

16

rp
2πγp

(−1)
mx+my−1

∑

n

Nb,n

∫ 1

0

dv

v [v (r2 − 1) + 1]1/2
exp (−tx,n − ty,n) (48)

×Wx,nWy,n exp [i (mxαx,n +myαy,n + pθn)] ,

where n runs over the beam-beam kicks, and

tx =
v

2
dx (dx − 2ax) , ty = f

v

2
dy (dy − 2ay) , (49)

Wx =
∑

lx

(−1)
lx [exp (−sx) Imx−2lx (sx)]

[

exp
(

−rx
2

)

Ilx

(rx
2

)]

, (50)

Wy =
∑

ly

(−1)
ly

[

exp (−sy) Imy−2ly (sy)
]

[

exp
(

−ry
2

)

Ily

(ry
2

)]

. (51)

The differences among the 16 different cases will show up in the definition of the Wx and Wy

through the indices of the Bessel functions. It is easy to see that all the W s for the different
cases can be brought to the form of (50) and (51), respectively. Using the symmetry relation
I−n (z) = In (z), and the change in the summation from lx 7→ −lx if necessary, it follows that

∑

lx

(−1)lx I±mx±2lx (sx) Ilx

(rx
2

)

=
∑

lx

(−1)lx Imx−2lx (sx) Ilx

(rx
2

)

. (52)

Therefore, the total resonance driving term is just 16 times (48), Umx,my ,p = 16U++++
mx,my ,p and the

complete beam-beam potential is

U(Jx, ψx, Jy, ψy) = Re

∑

mx,my,p

Umx,my,p exp [i (mxψx +myψy − pθ)] , (53)

The functions Wx,Wy involve infinite sums over the scaled Bessel functions e−zIn(z). These
scaled Bessel functions decrease rapidly with increasing order n, albeit more slowly for larger
arguments. For very large arguments, keeping the leading terms in the the asymptotic expansion,
we have limz→∞ e−zIn(z) = 1/

√
2πz, independent of the order n. Since the terms in the sums for

Wx,Wy alternate in sign, it implies for example that limaxdx→∞Wx = 0 = limaydy→∞Wy. Thus
we find that even at large amplitudes ∼ 6σ, about 40 terms in the summations are sufficient to
achieve a relative error of 10−6.
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FIG. 9: (Color) Seventh order resonance driving terms on anti-proton bunches 1, 6 and 12 at a 6σ
amplitude. Left: at injection, Right: at collision.

1. Resonance driving terms at injection and collision

Beam lifetimes in the Tevatron are observed to drop in the vicinity of seventh order resonances.
We have used Equation (48) to calculate the strength of the beam-beam driven seventh order
resonances. Figure 9 shows the resonance driving terms for three selected bunches at injection
and collision. The resonances are evaluated at a 6σ amplitude. At injection several resonances are
about an order of magnitude weaker for bunch 12 compared to bunches 1 and 6. Thus tune shifts,
chromaticities, coupling and resonance strengths all suggest that anti-proton lifetimes improve
towards the end of a train. At collision, some resonances e.g. 7νy, νx + 6νy, 2νx + 5νy resonances
are stronger for bunch 12 than for the other two bunches while the remaining resonances are weaker.
The correlation between bunch number and lifetime is less obvious in this case. Most of the observed
variations in anti-proton lifetime at collision can be related to variations in proton bunch intensities.
We note that the strength of the twelfth order resonances driven by the head-on interactions are
much weaker than the seventh order resonances driven by the long-range interactions.

Analysis of the resonance strengths leads to insight into several aspects of the beam-beam inter-
actions. As an example, Figure 10 shows the variation of the strengths with transverse amplitude
for anti-proton bunch 6 at top energy. The resonance strengths are orders of magnitude smaller at
1σ compared to values at 6σ. Thus particles in the tails will be driven to larger amplitudes while
particles in the core will be relatively unaffected. These resonance strengths have also been used
to analyze the impact of changing the helix size, changes in the proton emittance and operation
with 18×18 bunches. In the last case the luminosity can be kept constant if the anti-proton bunch
intensity is doubled. At injection the resonance strengths are found to be significantly weaker
(up to four times) which suggests that anti-proton lifetime would improve with 18×18 operation.
The drawback with fewer bunches is that the number of p − p̄ interactions per crossing in the
detectors increases during collisions so this would not be a feasible option above luminosities of
1032cm−2sec−1.

IV. PARTICLE TRACKING SIMULATIONS

Analytical calculations have shown how the beam-beam interactions influence beam parameters
such as orbits, tunes, coupling, chromaticity and resonance widths. These can be used to optimize
the helices and reduce the impact of the beam-beam forces. However one cannot extract dynamical
quantities such as the dynamic aperture, lifetime or emittance growth from these static parameters.
Numerical simulations can be used to follow the time evolution, albeit over limited times. In this
section we report on simulations to calculate the dynamic aperture and diffusion coefficients to
complement the analytical calculations.

Dynamic aperture calculations were done using two different codes MAD [15] and Sixtrack [16].
Typically about 200 particles are followed for about 105 to 106 turns (2 to 20 seconds in the
Tevatron) . These codes cannot however be used for lifetime calculations which are computationally
more demanding. We have developed another code BBSIM for this purpose as well as for calculations
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FIG. 10: (Color) The 7th order resonance driving terms at different amplitudes for anti-proton bunch 6 at
980 GeV. The resonance strengths are very weak in the core of the beam and much stronger in the tails.

of diffusion coefficients and emittance growth. This is a parallelized code that can follow many more
particles for longer periods of time, e.g. 104 particles for 106-107 turns in lifetime calculations. This
simulation model at present includes only the linear maps between the beam-beam interactions
and the nonlinear beam-beam interactions in order to limit the computing time. Similar programs
for Tevatron beam-beam lifetime calculations have been developed at LBNL [17] and at SLAC [18]
.

A. Lattice Model

The Tevatron lattice model used in the dynamic aperture codes is based on the design lattice
and machine settings. The nonlinearities in the model include the measured multipoles in the
magnets, the chromaticity and feed-down sextupoles, together with the beam-beam interactions.
A systematic skew quadrupole component of a1 = 1 unit in the arc dipoles is included together
with the skew quadrupole circuits that correct the minimum tune split to 0.001. The measured
misalignments, mainly the rolls in dipoles and the quadrupoles, are included, and the r.m.s. closed
orbit is corrected to within 0.2 mm.

B. Modeling of Beam-Beam Effects

There are two head-on interaction points and 70 long-range interaction points around the ring at
collision, and 72 long range interaction points at the other stages of the operational cycle. Proton
bunch intensities are about ten times larger than the anti-proton bunch intensities, so beam-beam
effects have largely been important for the anti-protons. Therefore, we only calculate the weak-
strong beam-beam effects of the strong bunches (protons) on the weak bunches (anti-protons).

For head-on interaction points, bunch length effects are taken into account because the beta-
function at the IP, β∗=35 cm, is about the same as the design bunch length of 37 cm. It was
shown in Reference [19] that the phase averaging effect [20] over the bunch length is significant in
the Tevatron and can reduce the transverse resonance widths by up to two orders of magnitude.
In our simulations, the strong bunch is sliced into 9 disks of charge of equal length. The transverse
size of each disk is different because of the rapid change in the beta function. The longitudinal
charge density of each disk falls off as a Gaussian from the center of the bunch. Particles in the
weak bunch are subject to impulsive kicks from the center of the disk followed by a drift to the
center of the next disk so that the phase propagation between the slices is also taken into account.

Long-range interactions are modeled by impulsive kicks applied to the weak beam since the
beta-functions at the locations of these interactions are much larger than the bunch length and
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the phase change over the length of the bunch is negligible.

C. Simulations at Injection

Machine nonlinearities have a strong influence on beam lifetime at injection. For example,
lifetimes of coalesced proton bunches are 5-6 hrs on the central orbit but drop to 1-2 hrs when
the protons are moved to their helical orbit. Uncoalesced proton bunches, which have a smaller
momentum spread, have larger lifetimes than coalesced bunches but their lifetime is also smaller
on the helix compared to their lifetime on the central orbit. These observations are qualitatively
reproduced in our dynamic aperture calculations. Fig. 11 shows the Dynamic Aperture (DA) in
units of the beam size σ) of protons (without beam-beam effects) after 105 turns. The DA of
protons with (∆p/p)rms = 10−4 is 10σ on the central orbit and it drops to 8.5σ on the helix.
Protons with (∆p/p)rms = 5×10−4, typical of coalesced bunches, have a DA of 8.5σ on the central
orbit and a DA ≤ 6σ on the helix. The physical aperture on the helix at injection is estimated to
be about 6σ.

Our simulations for anti-protons do include the beam-beam forces. At injection these beam-
beam forces change with each cogging. Fig. 12 shows the beam-beam separations of anti-proton
bunch 1 at the three different cogging stages. As an example we consider the tune footprints shown
in Figure 13 for amplitudes between 0-6 σ. The tune spreads from the beam-beam forces are of
the order of 0.001 at Cog 0 and Cog 2 but the footprint is smaller at Cog 1. These plots show that
relatively small changes in beam separations can have a dramatic influence on the tune footprint.
Folds in the footprint (where the slope of the tune with amplitude changes sign) can be seen at
each stage but they occur at different amplitudes. If the amplitude at the fold coincides with the
location of the resonances, the resonance width is very large. It turns out however at injection
that the tune footprint is dominated by the machine nonlinearities. The tune footprint is much
larger (∼0.005 in the horizontal plane) when machine nonlinearities are included and there are no
indications of folds. Consequently the tune footprints at all cogging stages are virtually the same.

1. Dynamic Aperture of Anti-Protons

The helical orbits of anti-protons and protons are almost symmetrical about the central orbit.
Thus we see a similar drop in DA of anti-protons in moving from the central orbit to the antiproton
helix when only machine nonlinearities are considered. DA calculations with beam-beam effects
have been performed for different values of several parameters including: proton intensities, dif-
ferent bunches, cogging stages, momentum spread, chromaticities, proton emittances etc. Here we
report on a select sample of these. The left plot in Figure 14 shows the average dynamic aperture
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FIG. 12: (Color) Beam-beam separations of anti-proton bunch 1 at the three cogging stages.
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after 106 turns as a function of the proton bunch intensity, obtained from MAD and Sixtrack. The
averaging is done over several angles in physical space. The one-sided error bars represent the
minimum dynamic aperture at each intensity. The typical range of variation between the average
and the minimum DA is about 1σ. The average DA after 106 turns without beam-beam effects is
∼ 6σ. From this plot we conclude that (a) beam-beam effects at the proton intensities of interest
reduce the DA by ∼ 2σ, and (b) the DA is nearly independent of the proton intensities over this
range.

We were able to measure the DA in stores where we observed a reduction in the emittance
after the anti-protons were injected. The emittances of the first four bunches were measured with
flying wires ten times during the 15-20 minutes these bunches circulated in the Tevatron before
acceleration. The observed drop in emittance implies that a significant fraction of particles were
initially outside the dynamic aperture and were lost. The asymptotic emittance is therefore an
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FIG. 14: Left: Dynamic aperture from simulations of anti-proton bunch 1 at 150GeV after 106 turns.
Right: Measured dynamic aperture of anti-proton bunch 1 at 150GeV. The data were obtained from 10
stores in April 2003 when the chromaticities were higher than present values. See the text for a discussion
of the error bars.

experimental measure of the dynamic aperture. Taking into account the reduction in both the
horizontal and vertical planes, the measured dynamic aperture is shown in the right plot of Figure
14. The error bars represent the statistical fluctuations (about 10%) over the ten stores from which
the data was obtained. These errors are mainly due to the changes in beam parameters such as
proton intensities, and machine conditions. The measured range of DAs is within the range of the
calculated DA values shown in the left plot. The intensity reduction expected from assuming that
the beam is contained within the estimated dynamic aperture was also in good agreement with
the observed intensity loss.

Experimental checks of our other DA simulations requires dedicated beam time. This beam
time is at a premium during collider operation. Instead we have to rely on the very indirect
relationship between the dynamic aperture and beam lifetime. Calculations of the DA at different
cogging stages reveals that the average DAs are about the same at all three stages. This is not
inconsistent with observations which show that the lifetime of the first group of bunches does not
change significantly between stages. Lifetime measurements at each stage are however limited by
insufficient statistics. On average the beams stay in each stage for 3-4 minutes, so often there is
insufficient data from the intensity monitors for reliable lifetime measurements.

2. Diffusion Coefficients

We have calculated diffusion coefficients at different amplitudes using the code BBSIM which
includes only the nonlinearities from the beam-beam interactions. Briefly, the diffusion coefficients
are calculated as follows. The horizontal diffusion coefficient at an amplitude A after N turns is

DJx(A) =
1

N
〈〈∆[VarJx(A)]〉〉 (54)

where ∆[VarJx(A)] is the change in the variance of the horizontal action. The double average 〈〈〉〉
signifies two averages: the action at each turn is first averaged over 100 particles placed at each
amplitude and then a second average is taken every 1000 turns (about 2 synchrotron periods) to
eliminate short term amplitude beating from phase space distortions. The variance of this averaged
action is calculated. We note here that diffusion coefficients relevant to the LHC were calculated
analytically in Reference [21] for motion in one degree of freedom with round beams.

As an example, Figure 15 shows the diffusion coefficients at a 5σ amplitude from the individual
parasitics for anti-proton bunch 1 as a function of the beam separation. Particles were tracked for
106 turns. Longer tracking did not change the coefficients much. We observe that two parasitics
with small separations of 5.2σ and 6.4σ have the largest diffusion coefficients but the parasitic
with the smallest separation has a very low diffusion coefficient. This shows that merely increasing
the minimum separation is not enough but larger separations at several parasitics with small
separations is required. The diffusion in the vertical plane is on average an order of magnitude
larger than in the horizontal plane. The diffusion coefficients do not scale linearly with the number
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FIG. 15: (Color) Diffusion coefficients for anti-proton bunch 1 at injection (150 GeV) from individual
parasitics plotted as a function of the separation at the parasitic.

of parasitics. Instead with all 72 parasitics included, the average diffusion coefficients are about
six to seven orders of magnitude larger. This is to be expected since diffusion is very sensitive to
the phase space structure created by the web of resonances from the nonlinearities.

D. Simulations at Collision

At collision the beta function at the two IPs (B0 and D0) are reduced to 35cm. As a result of the
beta squeeze, the beta functions in the IR quadrupoles increase to ∼1200 m compared to values
of ∼100 m in the arcs. The nonlinearities in these IR quadrupoles are therefore the dominant
machine nonlinearities at collision.

The helical separations also change at collision. The beam separations at all the beam-beam
interactions were seen earlier in Figure 3. The beta functions at the four parasitics nearest to the
IPs are the largest, the separations are small and consequently the tune shifts and the resonance
driving terms contain the largest contributions from these parasitics.

It is useful to first discuss the dynamics with only the machine nonlinearities. The tune spread
between amplitudes 0-6σ from these nonlinearities is fairly small, about 0.0006. This is completely
swamped by the tune spread of anti-protons from just the head-on interactions alone, about 0.02
at present proton intensities. The average DA after 106 turns on the anti-proton helix from the
machine nonlinearities is about 12σ. The single beam DA is thus larger than the physical aperture
(∼ 6σ) set by the primary collimators during a store.

Lifetimes of single beams at top energy are observed to be ∼ 300hrs during machine studies.
These lifetimes are close to expected values taking into account scattering off the residual gas and
intra-beam scattering. Hence the IR quadrupoles or other machine elements do not by themselves
limit beam lifetimes under normal conditions. When the beams collide, the lifetime is much lower
mainly due to p− p̄ interactions at the IPs. The anti-proton lifetime from these interactions is

τL(p̄) =
NT ;p̄

2LΣpp̄
(55)

Here NT ;p̄ is the total anti-proton beam intensity, L is the luminosity and the factor of two comes
from the two experiments. The p − p̄ inelastic cross-section Σpp̄ = 75mbarns [7]. At present
luminosities around 4×1031cm−2sec−1, anti-proton beam intensities around 700×109 particles, we
find τL(p̄) = 49hrs. Observed anti-proton beam lifetimes at the start of a store are in the range 25-
40 hrs. While it is clear that the beam lifetime is mainly due to luminosity losses, other effects such
as beam-beam interactions and the scattering mechanisms mentioned above have some impact. We
expect that the effects of beam-beam interactions will become stronger as Run II progresses with
increasing intensities in both beams.
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of anti-proton bunch 6 with (i) all parasitic interactions but no head-on, and (ii) all the beam-beam
interactions. The lattice nonlinearities are included in each case. The nearby sum resonances are shown
in both plots.

The beam-beam interactions increase the tune footprint significantly. The left plot in Fig. 16
shows the footprints due to the beam-beam interactions for bunch 1, 6, and 12 superposed on
nearby sum resonances up to twelfth order. The nominal working point (νx = 0.585, νy = 0.575)
is chosen to lie between fifth and seventh order resonances. At collision, footprints of all bunches
except for 1 and 12 are clustered around the footprint of bunch 6. The major differences in the
tune shifts between bunch 6, and bunch 1 and 12 are due to the missed parasitic collision closest to
the IP, upstream for bunch 1 and downstream for bunch 12. The vertical separations at the first
parasitic collision upstream of the IP are smaller than the horizontal separations. These collisions
therefore contribute more to the vertical tune shift. Since these collisions are missing for bunch 1,
the vertical tune shift will be smaller for this bunch. The optics is anti-symmetric about the IP,
thus the horizontal separations are smaller at the 1st parasitic downstream and therefore bunch 12
has a smaller horizontal tune shift. The tune spread for all bunches is largely due to the head-on
interactions. The right plot in Figure 16 shows the footprints for bunch 6 with and without the
head-on interactions. The tune spread from only the parasitic interactions is small compared to
the spread from the head-on interactions and in fact has a negative sign at large amplitudes, as
expected from the analysis in Section III. We also saw in Section III that the chromaticity and
coupling footprints on the other hand are completely due to the parasitic interactions.

1. Dynamic Aperture at Collision

We have calculated the DA of anti-protons in several situations to investigate the relative im-
portance of the different beam-beam interactions. Figure 17 shows the six-dimensional DA after
105 turns as a function of the initial angle in (x, y) space. Zero angle corresponds to a purely
horizontal amplitude while a 90◦ angle corresponds to a purely vertical amplitude. Three cases are
shown: no beam-beam interactions (single beam), head-on interactions only and all beam-beam
interactions. It is clear that the head-on interactions do not change the DA much compared to
the single beam case. When the parasitics are included, there is a sharp drop in DA ranging from
3-7σ at all angles.

In order to isolate the effect of the parasitic interactions, we consider special cases that can
only be considered in simulations. We dropped the head-on interactions but included different
combinations of parasitic interactions. Figure 18 compares the DA from all beam-beam interactions
with two of these special cases: (i)all the parasitics and (ii) only the four parasitics nearest the
IPs. We observe that the DA with all the parasitics (filled squares) is within ±1σ of the DA with
all interactions (crosses) at most angles. The DA averaged over all angles is virtually the same
(see Table II). The DA with only the four nearest parasitics (open squares) is significantly larger
than the others for angles between 45◦-70◦ but is close everywhere else. On average the DA with
only the nearest parasitics is only about 1σ larger. Thus of the 70 parasitics, the four parasitics
nearest the IPs are the most important in determining the DA. Calculations at several other tunes
[22] lead to the same conclusion. Table II summarizes the results of the DA calculations at the
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nominal working point.
The long time scale associated with the long-range interactions is evident in these results. While

the DA with only the machine errors changes relatively little from 105 turns to 106 turns, the DA
with the long-range interactions drops by another ∼ 2σ. This can be interpreted as evidence of
the fact that the long-range interactions fall off with distance. It takes a relatively long time for
particles to be transported to large enough amplitudes that the machine nonlinearities can take
over and transport these particles out of the vacuum chamber.

Synchro-betatron resonances driven by the beam-beam interactions are found to have a strong
influence on particle stability. Dynamic aperture calculations [22] with constant momentum offsets
of ∆p/p = 3×10−4 and with synchrotron oscillations of the same amplitude showed that the DA in
the latter case was smaller by ∼ 2σ. The effects of these resonances can be mitigated by operating
with lower chromaticities and with beams of lower energy spread than at present.
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Bunch 6: νx = 0.585, νy = 0.575

DA after 105 turns

(〈DA〉, DAmin) [4D] (〈DA〉, DAmin) [6D]

∆p/p = 0 ∆p/p = 3 × 10−4

Machine errors (15.2, 13.0) (12.9, 11.0)

Head-on and machine errors (14.5, 12.0) (12.5, 11.0)

Head-on, nearest PCs, machine errors (10.5, 9.0) (8.9, 7.0)

Head-on, nearest PCs at 10σ, machine errors (13.5, 12.0) (10.2, 8.0)

Only the parasitics, machine errors (10.2, 9.0) (7.7, 6.0)

All beam-beam, machine errors (10.0, 9.0) (7.7, 6.0)

(〈DA〉, DAmin) for bunches 1, 6 and 12 [6D, ∆p/p = 3 × 10−4]

105 turns 106 turns

Single beam (12.9, 11.0) (12.3, 11.0)

Bunch 1: all beam-beam (7.8, 6.0) (5.6, 3.0)

Bunch 6: all beam-beam (7.7, 6.0) (5.4, 4.0)

Bunch 12: all beam-beam (7.9, 6.0) (5.8, 4.0)

TABLE II: The average and minimum 6D dynamic aperture with various configurations of beam-beam
interactions. Proton bunch intensities = 2.7×1011 . The dynamic aperture of bunch 6 with only the
parasitic collisions (PCs) is nearly the same as that with all the beam-beam interactions. The nearest PC
are the parasitic interactions closest to the head-on collisions at B0 and D0. The last three rows compare
the dynamic apertures of bunches 1, 6 and 12. The differences are insignificant.
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FIG. 19: (Color) Dynamic aperture of antiproton bunches 1, 6, and 12 after 105 turns as a function of
proton beam intensity at 980 GeV.

2. Scaling with proton intensity

Figure 19 shows the dependence of the DAs on proton bunch intensities for bunches 1, 6, and
12. The DA of bunch 1 is always better than those of bunch 6, the DA of bunch 12 is also
better than those of bunch 6 except at the region of intensity lower than 2 × 109. These results

predict that the DA will drop very slowly with the proton intensity, roughly as N
−1/4
p for most

bunches. Assuming that the motion due to the nonlinearities is diffusive, the diffusive lifetime

scales as τD ∝ (DA)2 ∼ N
−1/2
p . The anti-proton lifetime from luminosity falls faster, as N−1

p with
increasing proton intensities. The lifetime at collision now is dominated by these p− p̄ interactions
and it is likely to remain true at design proton intensities.
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FIG. 20: (Color) Diffusion coefficients for anti-proton bunch 6 at collision (980 GeV) from individual
parasitics plotted as a function of the separation at the parasitic.

3. Diffusion Coefficients at Collision

We have seen that diffusion coefficients give useful insight into the relative importance of individ-
ual interactions and the nonlinear motion. Figure 20 shows the diffusion coefficients from individual
beam-beam interactions at collision for anti-proton bunch 6. These coefficients are calculated at a
5σ amplitude and by tracking for 106 turns. First we observe that the diffusion from the head-on
collisions is smaller than the smallest values in this figure and are therefore not shown. This also
reinforces the conclusion from the dynamic aperture calculations that the head-on interactions do
not lead to significant amplitude growth of particles under the conditions of the simulations. The
large diffusion coefficients in this figure are due to the parasitics next to B0 and D0 where the sepa-
rations are less than 6σ. In general we observe that the diffusion coefficients fall off with increasing
separation. From this calculation we conclude that the nearest parasitics and a couple of others
are the important ones. At higher beam intensities, the effects due to the nearest parasitics could
be mitigated by increasing the separations there. One way is to place additional separators [23]
in the regions adjacent to the IRs. Other possibilities include introducing a small crossing angle
(< 50µrad) or changing the bunch spacing. It is also feasible to increase the helix size at collision
by about 15% everywhere around the ring by increasing the voltages on the separators from their
present values.

V. CONCLUSIONS

The effects of beam-beam interactions depend on a number of key parameters including the beam
separation (in units of the rms beam size), plane of the orbits, dispersion and beta functions at
the interactions, phase advances between the interactions etc. We have considered the interactions
of elliptical Gaussian beams and derived theoretical expressions for important optical quantities
such as amplitude dependent tune shifts, coupling, chromaticities and resonance driving terms.
These expressions allow rapid numerical evaluation. For round beams these expressions simplify
and show explicitly how beam-beam tune shifts, coupling and chromaticities depend on parameters
such as the beam separations and angle of the plane of the orbit.

We have evaluated these quantities for individual anti-proton bunches in the Tevatron at injection
and collision. At injection we find that beam-beam chromaticities and resonance driving terms are
large. Tune shifts and coupling are not significant. Beam-beam effects are smaller towards the end
of a train of 12 bunches - this agrees qualitatively with observations. At collision the tune shifts
are large and primarily due to the head-on collisions at B0 and D0. The next largest tune shifts
are due to the parasitics on either side of B0 and D0. As a consequence the first and last bunch in
the train experience very different tune shifts from all the others. This prediction has recently been
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confirmed by measurements. Chromaticities and resonance strengths from beam-beam interactions
are significant, as at injection, but they suggest that the bunch pattern of beam-beam effects is more
mixed. The resonance strengths from long-range interactions are found to be orders of magnitude
larger in the tails than in the core. The overall influence of beam-beam effects on anti-proton
lifetimes at collision is weak however; inelastic p− p̄ interactions at B0 and D0 are the dominant
sources of beam loss.

We’ve also reported on numerical simulations of dynamic aperture and diffusion coefficients.
Both at injection and collision we find that there is no direct connection between the dynamic
aperture and the size of the tune footprint. At injection the tune footprint is largely determined
by the machine nonlinearities but the dynamic aperture is determined by the long-range interac-
tions. Experimental observations of the dynamic aperture when the Tevatron was operated at high
chromaticities are in good agreement with the calculated values. Calculations of diffusion coeffi-
cients from individual parasitic interactions enabled us to identify the most important parasitics.
As expected, we find that the diffusion coefficients with all beam-beam interactions increase much
faster than linearly with the number of interactions. At collision the head-on collisions are largely
responsible for the large tune footprint but they have almost no impact on the dynamic aperture.
Again, the long-range interactions are found to determine the dynamic aperture. Synchro-betatron
resonances are found to be important due to the machine and beam-beam induced chromaticities.
Bunches with smaller momentum spread would help to reduce their effects. Diffusion coefficients
have also helped us to identify the parasitics in the vicinity of the IRs as the important parasitics
at collision. If beam-beam compensation turns out to be required at higher intensities, then these
few parasitics would be good candidates for compensation.
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